Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Mathematics originates with intuition. But intuition alone can only go so far and formalism develops to handle the more difficult problems. Formalism, however, has its inherent dangers. There are three types of formalism. Type I formalism, exemplified in the work of Euler, is basically heuristic reasoning, the use of familiar reasoning in areas where the reasoning might not or ought not apply. The results include startling successes, and also theorems admitting exceptions. Type II formalism, associated with names like Bolzano, Cauchy, and Weierstrass, attempts to clarify the situation by means of precise definitions of the terms used. Type III formalism, the axiomatic method, leaves the fundamental concepts undefined, but offers precise rules for their use. Such precision deserts intuition and one pays the price. Most dramatically, the formal definitions of Type II formalism allow for the construction of monsters - bizarre counterexamples that exhibit behaviour inconsistent with existing intuition. The initially repellant nature of these "monsters" leads to dissatisfaction that is only dispelled by their growing familiarity and applicability. The present book covers the history of formalism in mathematics from Euclid through the 20th century. It should be of interest to advanced mathematics students, anyone who teaches mathematics, and anyone generally interested in the foundation of mathematics.