•  Retrait en 2 heures
  •  Assortiment impressionnant
  •  Paiement sécurisé
  •  Toujours un magasin près de chez vous
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Adversarial Machine Learning

Mechanisms, Vulnerabilities, and Strategies for Trustworthy AI

Jason Edwards
Livre relié | Anglais
120,95 €
+ 241 points
Pré-commander, disponible à partir du 30-04-2026
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Enables readers to understand the full lifecycle of adversarial machine learning (AML) and how AI models can be compromised

Adversarial Machine Learning is a definitive guide to one of the most urgent challenges in artificial intelligence today: how to secure machine learning systems against adversarial threats.

This book explores the full lifecycle of adversarial machine learning (AML), providing a structured, real-world understanding of how AI models can be compromised--and what can be done about it.

The book walks readers through the different phases of the machine learning pipeline, showing how attacks emerge during training, deployment, and inference. It breaks down adversarial threats into clear categories based on attacker goals--whether to disrupt system availability, tamper with outputs, or leak private information. With clarity and technical rigor, it dissects the tools, knowledge, and access attackers need to exploit AI systems.

In addition to diagnosing threats, the book provides a robust overview of defense strategies--from adversarial training and certified defenses to privacy-preserving machine learning and risk-aware system design. Each defense is discussed alongside its limitations, trade-offs, and real-world applicability.

In Adversarial Machine Learning, readers will gain a comprehensive view of today's most dangerous attack methods:

  • Evasion attacks that manipulate inputs to deceive AI predictions
  • Poisoning attacks that corrupt training data or model updates
  • Backdoor and trojan attacks that embed malicious triggers
  • Privacy attacks that reveal sensitive data through model interaction and prompt injection
  • Generative AI attacks that exploit the new wave of large language models

Blending technical depth with practical insight, Adversarial Machine Learning equips developers, security engineers, and AI decision-makers with the knowledge they need to understand the adversarial landscape and defend their systems with confidence.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
336
Langue:
Anglais

Caractéristiques

EAN:
9781394402038
Date de parution :
24-02-26
Format:
Livre relié
Format numérique:
Genaaid
Librairie Club

Seulement chez Librairie Club

+ 241 points sur votre carte client de Librairie Club
CADEAU

Ticket de cinéma offert

à l'achat d'un Bongo à partir de 39 €
CADEAU
Ticket de cinéma offert
CADEAU

Uniquement dans nos magasins : livret recettes exclusif offert

à l'achat d'un livre de la sélection
CADEAU
Livret de recettes exclusif offert
CONCOURS

Uniquement dans nos magasins : gagnez un voyage à Prague

à l'achat du nouveau Dan Brown
CONCOURS
Gagnez un voyage à Prague
Standaard Boekhandel

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.