Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
A rigorous, cutting-edge overview of the range of methods used to conduct causal inference in the social sciences.
This textbook provides a lucid, rigorous, and cutting-edge overview of the methods used to conduct causal inference in the social sciences, covering all the core techniques and latest advances. Offering a detailed survey of the current state of microeconometric theory, Damian Clarke delves deeply into machine learning applications and presents developments in difference-in-difference methods, instrumental variables, multiple hypothesis testing, and other advanced topics. A diverse range of examples and exercises provide hands-on experience and exposure to the sort of real data and questions being analyzed at the frontier of many fields. In approachable language that never sacrifices technical rigor, this text equips graduate students and researchers to apply state-of-the art microeconometrics scholarship to actionable problems.
Integrates a rich array of machine learning methods into causal modeling frameworks Covers recent advances in difference-in-differences and dynamic research designs, formal discussions of challenges related to inference and hypothesis testing, and heterogenity analysis Features a breadth of real-world examples from recent papers Includes coding implementation in Python, R and Stata