Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Im Zuge der vierten industriellen Revolution ist ein signifikanter Anstieg der Anforderungen an die Maschinenverfügbarkeit zu beobachten. Damit wächst auch der Bedarf an innovativen Instandhaltungsansätzen wie der Predictive Maintenance, mit denen Unternehmen nicht nur Kosten einsparen, sondern auch die Betriebssicherheit steigern und die Lebensdauer der Anlagen verlängern können. Ziel dieser Arbeit ist die Entwicklung eines intelligenten Fehlererkennungssystems für Großkraftmaschinen. Dieses System basiert auf der Kombination von künstlich generierten Sensordaten und Methoden des Transfer-Lernens und soll in der Lage sein, vom Normalzustand abweichende Maschinengeräusche - ein Frühwarnsignal für potenzielle Ausfälle - zu identifizieren. Im Rahmen der Dissertation wird dazu die Eignung verschiedener generativer Lernverfahren untersucht, den gegebenen Labordatensatz eines kleinen Versuchsmotors mittels Datensynthese künstlich zu erweitern. Aus den synthetisch erzeugten Daten werden durch intelligente Lernalgorithmen Merkmale extrahiert und dieses Wissen mit Hilfe eines Transfer-Lernmodells auf einen realen Anwendungsfall zur Fehlererkennung übertragen.