Vous l’avez sûrement remarqué : notre boutique se pare d’un tout nouveau look frais et moderne ! Notre nom, logo et site ont été repensés, mais rassurez-vous : nous restons la même librairie et papeterie que vous connaissez et appréciez.
Curieux·euse de découvrir l’histoire derrière notre nouveau style ?
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Over the last decade, statistical learning theory has achieved rapid progress due to the introduction and research of classification algorithms including support vector machines and boosting. Along with their successful applications in practice, theoretical performance of these algorithms becomes well understood in terms of margin bounds, Bayes risk consistency, and asymptotic rate analysis. This monograph provides further investigation of these algorithms within regularization frameworks and from an approximation theory point of view. Error analysis frameworks by error decomposition techniques are fully developed for two classes of regularization schemes which cover the support vector machines, regularized boosting, and support vector kernel networks by linear programming and indefinite kernels. The results presented in this monograph are by far the best. The error analysis frameworks have been shown to be wide applicable in most recent research works and should be able to shed light on future researches on related topics in machine learning and artificial intelligence.