Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Numerical simulations are an integral part of today's product development. Analysing and comparing multiple simulation results is a time consuming but necessary part. Thus, it is important to develop methods to help with this Comparative Analysis by identifying differences in the results. Here it is crucial to determine how such variations relate to each other.So-called Dimensionality Reduction Methods (DRMs) have been used for this since several years. Recently, the need for nonlinear reduction approaches was shown. One widely used method called Difference Principal Component Analysis (DPCA), which computes correlation between different parts of simulations, is based on a linear reduction approach. The aim of this dissertation is to extend the DPCA with nonlinear Dimensionality Reduction (DR).For this, the two steps of the DPCA's workflow were modified. For the first step of DR, several methods of generative DRMs have been extended. For the second so-called subtraction step, the new generalised concept of Difference Dimensionality Reduction was introduced and demonstrated with two specific implementations.The new methods were tested on multiple examples: Firstly, on artificial data to test the individual steps in an isolated environment and secondly on simulation results to evaluate them on realistic data. In the case of a nonlinear relation between these data sets, the superiority over linear approaches was demonstrated, while other linear dependencies were confirmed.With these modifications, the DPCA's workflow is meaningfully applicable to data sets with nonlinear dependencies, and the evaluation suggests a broad range of possible applications, as nonlinearities can occur in many data sets, for example data from topology optimisation or parameter variation.