Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
What is the appropriate geometric structure for neural networks that process spatial signals on Euclidean spaces or more general manifolds? This question takes us on a journey which leads to a gauge field theory of convolutional networks.Feature vector fields: The spatial signals we are interested in are fields of feature vectors. Feature fields allow to describe data like images, audio, videos, point clouds, or tensor fields, such as fluid flows and electromagnetic fields.Equivariant networks commute with actions of some symmetry group on their feature spaces. The relevant group actions in this work are geometric transformations of feature fields, like translations, rotations, or reflections of images. Equivariant models generalize everything they learn over the considered group of transformations. This property makes them significantly more data efficient, interpretable, and robust in comparison to non-equivariant models.Convolutional Neural Networks (CNNs) are the most common network architecture for processing feature fields. Conventional CNNs operate on Euclidean spaces and are translation equivariant, i.e. position independent. This work explains how to extend CNNs to be equivariant under more general symmetries of space.Coordinate independence: Manifolds are in general not equipped with a canonical choice of coordinates. Feature fields and neural network layers are hence required to be coordinate independent, that is, expressible relative to different frames of reference. The ambiguity of local frames represents the gauge freedom of our neural field theory. We show that the demand for coordinate independence requires CNNs to be equivariant under local gauge transformations.To offer an easy entry, the first part of this work focuses on the representation theory of equivariant convolutional networks on Euclidean spaces. The insights gained in the Euclidean setting are subsequently leveraged to develop the full gauge theory of coordinate independent CNNs on Riemannian manifolds. In the last part, we turn to a discussion of practical applications on specific manifolds. A comprehensive literature review demonstrates the generality of our theory by showing for more than 100 models from the literature how they can be understood as specific instantiations of 'Equivariant and Coordinate Independent CNNs'.