•  Retrait en 2 heures
  •  Assortiment impressionnant
  •  Paiement sécurisé
  •  Toujours un magasin près de chez vous
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences
  5. Technique
  6. Énergie
  7. Fractional-Order Activation Functions for Neural Networks

Fractional-Order Activation Functions for Neural Networks

Case Studies on Forecasting Wind Turbines' Generated Power

Kishore Bingi, Ramadevi Bhukya, Venkata Ramana Kasi
Livre relié | Anglais | Studies in Systems, Decision and Control | n° 588
274,95 €
+ 549 points
Livraison 2 à 3 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

This book suggests the development of single and multi-layer fractional-order neural networks that incorporate fractional-order activation functions derived using fractional-order derivatives. Activation functions are essential in neural networks as they introduce nonlinearity, enabling the models to learn complex patterns in data. However, traditional activation functions have limitations such as non-differentiability, vanishing gradient problems, and inactive neurons at negative inputs, which can affect the performance of neural networks, especially for tasks involving intricate nonlinear dynamics. To address these issues, fractional-order derivatives from fractional calculus have been proposed. These derivatives can model complex systems with non-local or non-Markovian behavior. The aim is to improve wind power prediction accuracy using datasets from the Texas wind turbine and Jeju Island wind farm under various scenarios. The book explores the advantages of fractional-order activation functions in terms of robustness, faster convergence, and greater flexibility in hyper-parameter tuning. It includes a comparative analysis of single and multi-layer fractional-order neural networks versus conventional neural networks, assessing their performance based on metrics such as mean square error and coefficient of determination. The impact of using machine learning models to impute missing data on the performance of networks is also discussed. This book demonstrates the potential of fractional-order activation functions to enhance neural network models, particularly in predicting chaotic time series. The findings suggest that fractional-order activation functions can significantly improve accuracy and performance, emphasizing the importance of advancing activation function design in neural network analysis. Additionally, the book is a valuable teaching and learning resource for undergraduate and postgraduate students conducting research in this field.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
238
Langue:
Anglais
Collection :
Tome:
n° 588

Caractéristiques

EAN:
9783031880902
Date de parution :
24-05-25
Format:
Livre relié
Format numérique:
Genaaid
Dimensions :
163 mm x 240 mm
Poids :
571 g
Librairie Club

Seulement chez Librairie Club

+ 549 points sur votre carte client de Librairie Club
CADEAU

Ticket de cinéma offert

à l'achat d'un Bongo à partir de 39 €
CADEAU
Ticket de cinéma offert
CONCOURS

Uniquement dans nos magasins : gagnez un voyage à Prague

à l'achat du nouveau Dan Brown
CONCOURS
Gagnez un voyage à Prague
RÉDUCTION

50% de réduction

sur une sélection de papeterie
RÉDUCTION
50% de réduction sur une sélection de papeterie
Standaard Boekhandel

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.