Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Stranggepresste Profilstrukturen finden eine weite Verbreitung als Crashstrukturen in Kraftfahrzeugen. Zur effizienten Auslegung dieser Strukturen hinsichtlich ihres Crashverhaltens können Topologieoptimierungsmethoden eine Schlüsselrolle spielen. Etablierte Methoden zur Topologieoptimierung sind aufgrund der in der Crashsimulation auftretenden Nichtlinearitäten in der Regel ungeeignet. Aus diesem Grund wurde die Graphen- und Heuristikbasierte Topologieoptimierung (GHT) entwickelt. Die GHT nutzt mathematische Graphen zur Beschreibung der Querschnittsgeometrie und konkurrierende Heuristiken zur Topologiemodifikation. Die aus Expertenwissen abgeleiteten Heuristiken wurden dabei mit dem Fokus auf lateral belastete Crashstrukturen entwickelt.Bei axial belasteten Crashstrukturen kann die Crashenergie effizient mittels Faltenbeulen absorbiert werden. Im Gegensatz zu lateral belasteten Crashstrukturen müssen hierbei jedoch andere Anforderungen berücksichtigt werden, um eine hohe Energieabsorption bei gleichzeitiger robuster Initiierung und Aufrechterhaltung des Faltenbeulens zu erreichen. Aus diesem Grund werden in der vorliegenden Arbeit neue Heuristiken für die GHT entwickelt, welche die genannten Anforderungen adressieren. Zudem wird die automatisierte Generierung von FE-Modellen in der Methode erweitert, um geometrische Details sowie Triggermechanismen berücksichtigen zu können.Die Eignung der Methode wird in verschiedenen Anwendungsbeispielen aufgezeigt. Aufgrund der implementierten Überprüfung von Fertigungsrestriktionen, der Berücksichtigung von geometrischen Details in der Modellerzeugung sowie der Effizienz hinsichtlich der benötigten Funktionsaufrufe ist die Methode zur Topologieoptimierung von Crashstrukturen in einem industriellen Entwicklungsumfeld geeignet.