Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Industrial Fault Diagnosis and Remaining Useful Life Prediction: Cross-Domain, Zero-Sample, and Degradation Modeling Methods introduces zero-sample learning methods that enable fault diagnosis and Predict Remaining Useful Life (RUL) without the need for labelled fault data. This is particularly valuable in industrial settings where labelled data is scarce or unavailable. Offers step-by-step guidance on implementing zero-shot learning models using real industrial data, reducing the learning curve for practitioners; includes real-world industrial case studies to demonstrate the application of zero-sample learning techniques in various industries, such as manufacturing, energy, and transportation. Such case studies provide readers with actionable insights and practical solutions. The book covers advanced methodologies for predicting the remaining useful life of industrial equipment, supporting readers in optimizing maintenance schedules, reducing downtime and extending the lifespan of critical assets. Covers state-of-the-art algorithms, including deep learning, transfer learning and domain adaptation, tailored for zero-sample scenarios. These tools empower readers to develop robust fault diagnosis and RUL prediction systems, enhancing predictive maintenance capabilities and ensuring the reliability of industrial systems.