Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Préface de Patrick Albert – Cofondateur d'ILOG et du HUB France IA
Ce livre sur le Machine Learning et l'IA générative avec le langage Python permet de disposer des connaissances théoriques nécessaires pour une compréhension approfondie du Machine Learning et d’appréhender les outils techniques utiles pour mettre en pratique les concepts étudiés. L’auteur y expose des exemples concrets sur les concepts de l’apprentissage automatique. Les lecteurs avertis trouveront dans ce livre une occasion d’aller plus loin dans leur compréhension des algorithmes du Machine Learning.
L’auteur commence par expliquer les enjeux de la Data Science ainsi que les notions fondamentales du Machine Learning avant de présenter la démarche théorique d'une expérimentation en Data Science avec les notions de modélisation d'un problème et de métriques de mesure de performances d'un modèle.
Le lecteur peut ensuite passer à la pratique en manipulant les bibliothèques Python NumPy et Pandas, ainsi que l’environnement Jupyter. Il peut ainsi aborder sereinement les chapitres à venir, qui lui feront découvrir les concepts mathématiques, et la pratique sous-jacente, relatifs aux algorithmes du Machine Learning et de l'IA générative, tels que les statistiques pour la Data Science, les régressions linéaire, polynomiale ou logistique, les arbres de décision et Random Forest, l’algorithme K-means, les machines à vecteurs de support (Support Vector Machine), l’analyse en composantes principales, les réseaux de neurones. Le Deep Learning avec les Generative Adversarial Networks pour le développement de vos propres modèles de génération d'images réalistes. Les notions de Deep Learning sont mises en pratique avec TensorFlow, OpenCV et PyTorch dans les environnements Google Colab et VSCode.
Pour conclure son apprentissage, le lecteur abordera le traitement automatique du langage (Natural Language Processing) et les concepts fondamentaux du Prompt Engineering.