•  Retrait en 2 heures
  •  Assortiment impressionnant
  •  Paiement sécurisé
  •  Toujours un magasin près de chez vous
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Machine Unlearning for Governance of Foundation Models

Livre relié | Anglais | Synthesis Lectures on Computer Vision
42,95 €
+ 85 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

This book provides a systematic and in-depth introduction to machine unlearning (MU) for foundation models, framed through an optimization-model-data tri-design perspective and complemented by assessments and applications. As foundation models are continuously adapted and reused, the ability to selectively remove unwanted data, knowledge, or model behavior, without full retraining, poses new theoretical and practical challenges. Thus, MU has become a critical capability for trustworthy, deployable, and regulation-ready artificial intelligence. From the optimization viewpoint, this book treats unlearning as a multi-objective and often adversarial problem that must simultaneously enforce targeted forgetting, preserve model utility, resist recovery attacks, and remain computationally efficient. From the model perspective, the book examines how knowledge is distributed across layers and latent subspaces, motivating modular and localized unlearning. From the data perspective, the book explores forget-set construction, data attribution, corruption, and coresets as key drivers of reliable forgetting.

Bridging theory and practice, the book also provides a comprehensive review of benchmark datasets and evaluation metrics for machine unlearning, critically examining their strengths and limitations. The authors further survey a wide range of applications in computer vision and large language models, including AI safety, privacy, fairness, and industrial deployment, highlighting why post-training model modification is often preferred over repeated retraining in real-world systems. By unifying optimization, model, data, evaluation, and application perspectives, this book offers both a foundational framework and a practical toolkit for designing machine unlearning methods that are effective, robust, and ready for large-scale, regulated deployment.

Spécifications

Parties prenantes

Editeur:

Contenu

Nombre de pages :
140
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9783032172815
Date de parution :
31-03-26
Format:
Livre relié
Format numérique:
Genaaid
Dimensions :
168 mm x 240 mm
Librairie Club

Seulement chez Librairie Club

+ 85 points sur votre carte client de Librairie Club
Standaard Boekhandel

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.