•  Retrait en 2 heures
  •  Assortiment impressionnant
  •  Paiement sécurisé
  •  Toujours un magasin près de chez vous
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Mathematical Foundations of Artificial Intelligence

Basics of Manifold Theory

Momiao Xiong
Livre relié | Anglais
222,45 €
+ 444 points
Livraison 2 à 3 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Mathematical Foundations of Artificial Intelligence: Basics of Manifold Theory is the first volume in a two-part series. Together, they establish a unifying mathematical framework based on smooth manifold theory and Riemannian geometry・essential tools for representing, analyzing, and integrating the growing complexity of modern artificial intelligence (AI) systems and scientific models.

Differential geometry now plays a central role across AI, biology, physics, and medicine. From deep learning, generative modeling, and manifold learning to reasoning algorithms and physical AI, manifolds offer a coherent geometric language that bridges theory and practice. This volume introduces key concepts・topological and smooth manifolds, Riemannian metrics, differential forms, Lie derivatives, and statistical geometry・alongside illustrative applications to data science, genomics, drug discovery, and AI-driven systems.

Unlike traditional texts, this book combines rigor with intuition, integrating formal theory, computational methods, and interdisciplinary insights, and is ideal for graduate students and professionals in mathematics, statistics, computer science, AI, physics, bioinformatics, and biomedical sciences. It also serves as a foundational reference for researchers developing AI systems grounded in geometry, scientific modeling, and data-driven discovery.

Key Features

- Unifies core manifold concepts to support integrated thinking across disciplines

- Treats manifolds as natural geometric domains for data representation in AI and the sciences

- Bridges abstract theory with practical algorithms and real-world applications

- Develops Lie derivative aware graphical neural networks for adaptive-AI and molecular property prediction

- Develops Lie derivative enhanced reaction-diffusion equations for disease gene identification and treatment design

- Develops probabilistic modeling and information geometry for modern learning systems

- Applies geometric insight to AI fields, including generative models, graph learning, and reasoning

- Applies the Gauss map and Chen-Gauss-Bonnet theorem to physical AI incorporating geometric constraints for robotics and tumor cell location and range identification

- Features step-by-step examples, case studies, and visual explanations to support understanding

- Serves as an advanced educational and skill-building resource in the age of AI, leveraging the capabilities of emerging AI tools for automatic programming and self-study

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
368
Langue:
Anglais

Caractéristiques

EAN:
9781041076254
Date de parution :
13-02-26
Format:
Livre relié
Format numérique:
Genaaid
Dimensions :
178 mm x 254 mm
Librairie Club

Seulement chez Librairie Club

+ 444 points sur votre carte client de Librairie Club
Standaard Boekhandel

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.