•  Retrait en 2 heures
  •  Assortiment impressionnant
  •  Paiement sécurisé
  •  Toujours un magasin près de chez vous
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Savoirs
  4. Informatique
  5. Réseaux
  6. Sécurité du réseau
  7. Moving Target Defense Based on Artificial Intelligence

Moving Target Defense Based on Artificial Intelligence

Tao Zhang, Xiangyun Tang, Jiawen Kang, Changqiao Xu
Livre broché | Anglais | Springerbriefs in Computer Science
83,95 €
+ 167 points
Livraison 2 à 3 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Moving Target Defense (MTD) has been proposed as an innovative defense framework, which aims to introduce the dynamics, diversity and randomization into static network by the shuffling, heterogeneity and redundancy. It is born to solve the problem that traditional security solutions respond and defend against security threats after attacks occurrence, which will lead to the defender always having disadvantages in attack-defense confrontation. This book explores the challenges and solutions related to moving target defense in the cloud-edge-terminal networks.

This book fills this gap by providing a comprehensive and detailed approach to designing intelligent MTD frameworks for cloud-edge-terminal networks. It is essential reading for researchers and professionals in network security and artificial intelligence who seek innovative defense solutions.

The book is organized into 6 chapters, each addressing a key area of MTD and its integration with Artificial Intelligence. Chapter 1 introduces the fundamental concepts of MTD, security challenges in cloud-edge-terminal networks, and the role of artificial intelligence in enhancing MTD. Chapter 2 delves into host address mutation based on advantage actor-critic approach. Chapter 3 proposes a collaborative mutation-based MTD based on hierarchical reinforcement learning. Chapter 4 presents roadside units configuration mutation based on proximal policy optimization approach. Chapter 5 explores route mutation based on multiagent reinforcement learning. Chapter 6 provides a summary of insights and lessons learned throughout the book and outlines future research directions in MTD.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
110
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9789819506149
Date de parution :
02-10-25
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
150 mm x 226 mm
Poids :
204 g
Librairie Club

Seulement chez Librairie Club

+ 167 points sur votre carte client de Librairie Club
INSPIRATION

Idées cadeaux pour la fin d'année

Dans notre sélection vous trouverez le cadeau pour faire briller les yeux de vos proches.
INSPIRATION
Fin d'année 2025
Standaard Boekhandel

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.