•  Retrait en 2 heures
  •  Assortiment impressionnant
  •  Paiement sécurisé
  •  Toujours un magasin près de chez vous
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Neuronale Netze und Deep Learning kapieren

Der einfache Praxiseinstieg mit Beispielen in Python

Andrew W. Trask
Livre broché | Allemand | mitp Professional
29,95 €
+ 59 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

  • Von den Grundlagen Neuronaler Netze über Machine Learning bis hin zu Deep-Learning-Algorithmen
  • Anschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPy
  • Keine Vorkenntnisse in Machine Learning oder höherer Mathematik erforderlich

Deep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht.

Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz.

Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen.

Aus dem Inhalt:
  • Parametrische und nichtparametrische Modelle
  • Überwachtes und unüberwachtes Lernen
  • Vorhersagen mit mehreren Ein- und Ausgaben
  • Fehler messen und verringern
  • Hot und Cold Learning
  • Batch- und stochastischer Gradientenabstieg
  • Überanpassung vermeiden
  • Generalisierung
  • Dropout-Verfahren
  • Backpropagation und Forward Propagation
  • Bilderkennung
  • Verarbeitung natürlicher Sprache (NLP)
  • Sprachmodellierung
  • Aktivierungsfunktionen
    • Sigmoid-Funktion
    • Tangens hyperbolicus
    • Softmax
  • Convolutional Neural Networks (CNNs)
  • Recurrent Neural Networks (RNNs)
  • Long Short-Term Memory (LSTM)
  • Deep-Learning-Framework erstellen

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
360
Langue:
Allemand
Collection :

Caractéristiques

EAN:
9783747500156
Format:
Livre broché
Dimensions :
171 mm x 241 mm
Poids :
608 g
Librairie Club

Seulement chez Librairie Club

+ 59 points sur votre carte client de Librairie Club
INSPIRATION

Idées cadeaux pour la fin d'année

Dans notre sélection vous trouverez le cadeau pour faire briller les yeux de vos proches.
INSPIRATION
Fin d'année 2025
Standaard Boekhandel

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.