Vous l’avez sûrement remarqué : notre boutique se pare d’un tout nouveau look frais et moderne ! Notre nom, logo et site ont été repensés, mais rassurez-vous : nous restons la même librairie et papeterie que vous connaissez et appréciez.
Curieux·euse de découvrir l’histoire derrière notre nouveau style ?
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Completely continuous operators on a Hilbert space or even on a Banach space have received considerable attention in the last fifty years. Their study was usually confined to special completely continuous operators or to the discovery of properties common to all of them (for instance, that every such operator admits a proper invariant subspace). On the other hand, interest in spaces of completely continuous operators is comparatively new. Some results of this type may be found implicit in the early work of E. SCHMIDT. Other results are "generally known" and cannot be found explicitly in print. One of the interesting and relatively new results states that modulo the language of BANACH (that is, up to equivalence) the space of all operators on a Hilbert space f> is the second conjugate of the space of all completely continuous operators on f>. The study of spaces of completely continuous operators on a perfectly general Banach space involves many difficulties. Some stem, for instance, from the unsolved problem whether a completely continuous operator on a perfectly general Banach space is always approximable in bound by operators of finite rank. The answer is affirmative in all the special Banach spaces considered. An affirmative answer to the above problem is the ultimate desideratum - it ould simplify the theory considerably. A negative answer, however, would be equally interesting (although for us not so useful), since it would settle negatively the open "basis problem".