•  Retrait en 2 heures
  •  Assortiment impressionnant
  •  Paiement sécurisé
  •  Toujours un magasin près de chez vous
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Realtime Data Mining

Self-Learning Techniques for Recommendation Engines

Alexander Paprotny, Michael Thess
Livre broché | Anglais | Applied and Numerical Harmonic Analysis
106,95 €
+ 213 points
Format
Livraison 1 à 2 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data. The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's "classic" data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed.

This monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking by considering recommendation tasks as control-theoretic problems. Realtime Data Mining: Self-Learning Techniques for Recommendation Engines will also interest application-oriented mathematicians because it consistently combines some of the most promising mathematical areas, namely control theory, multilevel approximation, and tensor factorization.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
313
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9783319344454
Date de parution :
27-08-16
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
156 mm x 234 mm
Poids :
476 g
Librairie Club

Seulement chez Librairie Club

+ 213 points sur votre carte client de Librairie Club
CADEAU

Ticket de cinéma offert

à l'achat d'un Bongo à partir de 39 €
CADEAU
Ticket de cinéma offert
CONCOURS

Uniquement dans nos magasins : gagnez un voyage à Prague

à l'achat du nouveau Dan Brown
CONCOURS
Gagnez un voyage à Prague
RÉDUCTION

50% de réduction

sur une sélection de papeterie
RÉDUCTION
50% de réduction sur une sélection de papeterie
Standaard Boekhandel

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.