Vous l’avez sûrement remarqué : notre boutique se pare d’un tout nouveau look frais et moderne ! Notre nom, logo et site ont été repensés, mais rassurez-vous : nous restons la même librairie et papeterie que vous connaissez et appréciez.
Curieux·euse de découvrir l’histoire derrière notre nouveau style ?
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Breast cancer is the leading cause of cancer death among women. Screening mammography is the only method currently available for the reliable detection of early and potentially curable breast cancer. Research indicates that the mortality rate could decrease by 30% if women age 50 and older have regular mammograms. In this dissertation, we propose a new full-field mammogram analysis method focusing on characterizing and identifying normal mammograms. A mammogram is analyzed region by region and is classified as normal or abnormal. The methods for extracting features are presented in this thesis which are used to distinguish normal and abnormal regions of a mammogram. In this book, convolution neural network classifier is used to boost the classification performance. This classifier performs better than previous classifiers. In that it shows more accuracy than the others classifiers, the misclassification rate of normal mammograms as abnormal.This approach performs good on overlapping problem.