•  Retrait en 2 heures
  •  Assortiment impressionnant
  •  Paiement sécurisé
  •  Toujours un magasin près de chez vous
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences
  5. Sciences de la terre
  6. Hydrologie
  7. Refining the Committee Approach and Uncertainty Prediction in Hydrological Modelling

Refining the Committee Approach and Uncertainty Prediction in Hydrological Modelling

Nagendra Kayastha
Livre relié | Anglais | Ihe Delft PhD Thesis
228,95 €
+ 457 points
Livraison 2 à 3 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Due to the complexity of hydrological systems a single model may be unable to capture the full range of a catchment response and accurately predict the streamflows. A solution could be the in use of several specialized models organized in the so-called committees. Refining the committee approach is one of the important topics of this study, and it is demonstrated that it allows for increased predictive capability of models.

Another topic addressed is the prediction of hydrologic models' uncertainty. The traditionally used Monte Carlo method is based on the past data and cannot be directly used for estimation of model uncertainty for the future model runs during its operation. In this thesis the so-called MLUE (Machine Learning for Uncertainty Estimation) approach is further explored and extended; in it the machine learning techniques (e.g. neural networks) are used to encapsulate the results of Monte Carlo experiments in a predictive model that is able to estimate uncertainty for the future states of the modelled system.

Furthermore, it is demonstrated that a committee of several predictive uncertainty models allows for an increase in prediction accuracy. Catchments in Nepal, UK and USA are used as case studies.

In flood modelling hydrological models are typically used in combination with hydraulic models forming a cascade, often supported by geospatial processing. For uncertainty analysis of flood inundation modelling of the Nzoia catchment (Kenya) SWAT hydrological and SOBEK hydrodynamic models are integrated, and the parametric uncertainty of the hydrological model is allowed to propagate through the model cascade using Monte Carlo simulations, leading to the generation of the probabilistic flood maps. Due to the high computational complexity of these experiments, the high performance (cluster) computing framework is designed and used.

This study refined a number of hydroinformatics techniques, thus enhancing uncertainty-based hydrological and integrated modelling.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
212
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9781138373273
Date de parution :
27-09-18
Format:
Livre relié
Format numérique:
Genaaid
Dimensions :
170 mm x 244 mm
Poids :
539 g
Librairie Club

Seulement chez Librairie Club

+ 457 points sur votre carte client de Librairie Club
Standaard Boekhandel

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.