Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Riemannian optimization is a powerful tool for decision-making in situations where the data and decision space are structured as non-flat spaces due to physical constraints and/or underlying symmetries. In emerging fields such as machine learning, quantum computing, biomedical imaging, and robotics, data and decisions often exist in curved, non-Euclidean spaces due to physical constraints or underlying symmetries. Riemannian online optimization provides a new framework for handling learning tasks where data arrives sequentially in geometric spaces. This monograph offers a comprehensive overview of online learning over Riemannian manifolds, and offers a unified overview of the state-of-the-art algorithms for online optimization over Riemannian manifolds. Also presented is a detailed and systematic analysis of achievable regret for those algorithms. The study emphasizes how the curvature of manifolds influences the trade-off between exploration and exploitation, and the performance of the algorithms. After an introduction, Section 2 briefly introduces Riemannian manifolds, together with the preliminary knowledge of Riemannian optimization and Euclidean online optimization. In Section 3, the fundamental Riemannian online gradient descent algorithm under full information feedback is presented, and the achievable regret on both Hadamard manifolds and general manifolds is analyzed. Section 4 extends the Riemannian online gradient descent algorithm to the bandit feedback setting. In Sections 5 and 6, the authors turn to two advanced Riemannian online optimization algorithms designed for dynamic regret minimization, the Riemannian online extra gradient descent and the Riemannian online optimistic gradient descent.