Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Computer vision aims to teach machines and algorithms to 'see' with the ultimate goal of creating 'intelligent' applications and devices that can provide assistance to humans in a wide array of scenarios. This thesis presents an investigation of computer vision on three layers: low-level features, mid-level representations and high-level applications. Each of the layers depends on the previous ones while also generating constraints and requirements for them. At the application layer human-machine interfaces come into play and link the human perception to computer vision. By studying all layers we can gain a much deeper insight into the interplay of different methods, than by examining an isolated problem. Furthermore, we are able to factor constraints imposed by different layers and the users into the design of the algorithms, instead of optimizing a single method based purely on algorithmic performance measures. After a brief introduction in Chapter 1, Chapter 2 addresses the feature layer and describes our novel shape-centered interest points that play a vital role throughout this thesis. These interest points are formed at location of high local symmetry as opposed to corner interest points which occur along the outline of shapes. Experiments show that they are very robust with respect to common natural image transformations, such as scaling, rotation and the introduction of noise and clutter. Based on these features Chapter 3 presents two strategies to build robust mid-level image representations. First, a novel feature grouping method is introduced. The scheme offers a powerful way to combine the advantages of shape-centered interest points, namely robustness and a tight connection to a unique shape, and corner-based interest points, namely strong descriptors. Furthermore, Chapter 3 introduces a novel set of medial feature superpixels, that represent a feed-forward way to divide the image into small, visually-homogeneous regions offering a compact and efficient mid-level representation of the image information. Finally, Chapter 4 bridges the gap between computer vision and the human observer by introducing three applications that employ the shape-centered representations from the two previous Chapters. First a multi-class scene labeling scheme is presented that produces dense annotations of images, combining a local prediction step with a global optimization scheme. Then, Section 4.2 introduces a novel image retrieval tool that operates on highlevel semantic information. Such semantic annotations could be generated by automatic annotation schemes as the one described in the previous Section. Finally, the novel idea of predicting the detectability of a pedestrian in a driver assistance context is put forward and investigated. The different modules of this thesis are tightly connected and inter-dependent, in the framework of shape-centered representations. The connections between the modules avails the possibility to feed information back from higher to lower layers and optimize the design choices there. This thesis provides a framework looking at static phenomena but the presented approach could be extended to the analysis of dynamic scenes as well.