This monograph presents state-of-the-art results at the intersection of Harmonic Analysis, Functional Analysis, Geometric Measure Theory, and Partial Differential Equations, providing tools for treating elliptic boundary value problems for systems of PDE s in rough domains. Largely self-contained, it develops a comprehensive Calderón-Zygmund theory for singular integral operators on many Herz-type spaces, and their associated Hardy and Sobolev spaces, in the optimal geometric-measure theoretic setting of uniformly rectifiable sets. The present work highlights the effectiveness of boundary layer potential methods as a means of establishing well-posedness results for a wide family of boundary value problems, including Dirichlet, Neumann, Regularity, and Transmission Problems. Graduate students, researchers, and professional mathematicians interested in harmonic analysis and boundary problems will find this monograph a valuable resource in the field.
Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.