Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
The successful numerical treatment of the electronic Schrödinger equation provides an effective predictive tool for new insights in several research areas like chemistry, biochemistry, molecular physics, material science and nanotechnology. However, any numerical solution of the electronic Schrödinger equation using conventional linear discretization schemes is not feasible due to its high dimensionality. Therefore, typically nonlinear model approximations like Hartree-Fock, coupled cluster or density functional theory are used. In this work we construct, study and apply novel sparse tensor product multiscale many-particle spaces with finite-order weights for the electronic Schödinger equation. This new variant of sparse grids combines the favorable properties of efficient Gaussian type orbitals basis sets and adaptive tensor product multiscale bases, which provide guaranteed convergence rates. In particular, the introduced formulation of the underlying particle-wise subspace splitting includes several decomposition schemes well known in different research fields. With the implementation of our approach, small atoms and molecules can be treated at very high accuracy.