•  Retrait en 2 heures
  •  Assortiment impressionnant
  •  Paiement sécurisé
  •  Toujours un magasin près de chez vous
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Vie pratique
  4. Art & Culture
  5. Architecture
  6. Structure architecturale & Design
  7. Structural Design and Optimization of Lifting Self-Forming Gfrp Elastic Gridshells Based on Machine Learning

Structural Design and Optimization of Lifting Self-Forming Gfrp Elastic Gridshells Based on Machine Learning

Soheila Kookalani, Hamidreza Alavi, Farzad Pour Rahimian
305,45 €
+ 610 points
Livraison 2 à 3 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Structural Design and Optimization of Lifting Self-forming GFRP Elastic Gridshells Based on Machine Learning presents the algorithms of machine learning (ML) that can be used for the structural design and optimization of glass fiber reinforced polymer (GFRP) elastic gridshells, including linear regression, ridge regression, K-nearest neighbors, decision tree, random forest, AdaBoost, XGBoost, artificial neural network, support vector machine (SVM), and six enhanced forms of SVM. It also introduces interpretable ML approaches, including partial dependence plot, accumulated local effects, and SHaply additive exPlanations (SHAP). Also, several methods for developing ML algorithms, including K-fold cross-validation (CV), Taguchi, a technique for order preference by similarity to ideal solution (TOPSIS), and multi-objective particle swarm optimization (MOPSO), are proposed. These algorithms are implemented to improve the applications of gridshell structures using a comprehensive representation of ML models. This research introduces novel frameworks for shape prediction, form-finding, structural performance assessment, and shape optimization of lifting self-forming GFRP elastic gridshells using ML methods. This book will be of interest to researchers and academics interested in advanced design methods and ML technology in architecture, engineering, and construction fields.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
212
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9781032901206
Date de parution :
26-08-25
Format:
Livre relié
Format numérique:
Genaaid
Dimensions :
156 mm x 234 mm
Poids :
494 g
Librairie Club

Seulement chez Librairie Club

+ 610 points sur votre carte client de Librairie Club
Standaard Boekhandel

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.