Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
This book reviews a few different derivations of the Hawking radiation, most main solutions to the paradox proposed in the literature, and some analog laboratory experiments. A black hole is an object whose gravity is so strong that nothing, not even light, can escape its grasp. However, applying quantum field theory on a black hole background, Stephen Hawking showed that black holes are not completely black. In fact, they seem to emit a form of radiation that was named the Hawking radiation. The Hawking radiation appears to be thermal and in a quantum state that is independent of the initial state that formed the black hole; instead, it solely depends on the black hole's total mass, spin, and electric charge. A problem arises when we consider an initial system that collapses, forms a black hole, and eventually the black hole evaporates completely through Hawking radiation. Since Hawking radiation depends solely on the black hole's total mass, spin, and electric charge, it implies that numerous distinct initial states could all lead to the same final state. Consequently, the intricate details of the initial state seem to be lost, which contradicts the unitarity of evolution of closed systems, a fundamental principle of quantum mechanics. The unitarity principle implies that closed systems evolve in a reversible manner, such that, knowing a system's final state, and the way it evolved, one can always determine its initial state. The many-to-one evolution of the black hole initial state to radiation evolution is in a clear contradiction with this principle. This is the black hole information paradox. The black hole information paradox was found in the 1970s by Stephen Hawking. Over the past 50 years, it has attracted a lot of interest in the theoretical physics community and is still an active research field. Chapters are written by leading experts in the field.