•  Retrait en 2 heures
  •  Assortiment impressionnant
  •  Paiement sécurisé
  •  Toujours un magasin près de chez vous
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Time Series Forecasting in Python EBOOK

Marco Peixeiro
Ebook | Anglais
49,20 €
+ 49 points
Format
Disponible immédiatement
Passer une commande en un clic
Payer en toute sécurité

Description

Build predictive models from time-based patterns in your data. Master statistical models including new deep learning approaches for time series forecasting.

In Time Series Forecasting in Python you will learn how to:

    Recognize a time series forecasting problem and build a performant predictive model
    Create univariate forecasting models that account for seasonal effects and external variables
    Build multivariate forecasting models to predict many time series at once
    Leverage large datasets by using deep learning for forecasting time series
    Automate the forecasting process

Time Series Forecasting in Python teaches you to build powerful predictive models from time-based data. Every model you create is relevant, useful, and easy to implement with Python. You’ll explore interesting real-world datasets like Google’s daily stock price and economic data for the USA, quickly progressing from the basics to developing large-scale models that use deep learning tools like TensorFlow.

About the technology
You can predict the future—with a little help from Python, deep learning, and time series data! Time series forecasting is a technique for modeling time-centric data to identify upcoming events. New Python libraries and powerful deep learning tools make accurate time series forecasts easier than ever before.

About the book
Time Series Forecasting in Python teaches you how to get immediate, meaningful predictions from time-based data such as logs, customer analytics, and other event streams. In this accessible book, you’ll learn statistical and deep learning methods for time series forecasting, fully demonstrated with annotated Python code. Develop your skills with projects like predicting the future volume of drug prescriptions, and you’ll soon be ready to build your own accurate, insightful forecasts.

What's inside

    Create models for seasonal effects and external variables
    Multivariate forecasting models to predict multiple time series
    Deep learning for large datasets
    Automate the forecasting process

About the reader
For data scientists familiar with Python and TensorFlow.

About the author
Marco Peixeiro is a seasoned data science instructor who has worked as a data scientist for one of Canada’s largest banks.

Table of Contents
PART 1 TIME WAITS FOR NO ONE
1 Understanding time series forecasting
2 A naive prediction of the future
3 Going on a random walk
PART 2 FORECASTING WITH STATISTICAL MODELS
4 Modeling a moving average process
5 Modeling an autoregressive process
6 Modeling complex time series
7 Forecasting non-stationary time series
8 Accounting for seasonality
9 Adding external variables to our model
10 Forecasting multiple time series
11 Capstone: Forecasting the number of antidiabetic drug prescriptions in Australia
PART 3 LARGE-SCALE FORECASTING WITH DEEP LEARNING
12 Introducing deep learning for time series forecasting
13 Data windowing and creating baselines for deep learning
14 Baby steps with deep learning
15 Remembering the past with LSTM
16 Filtering a time series with CNN
17 Using predictions to make more predictions
18 Capstone: Forecasting the electric power consumption of a household
PART 4 AUTOMATING FORECASTING AT SCALE
19 Automating time series forecasting with Prophet
20 Capstone: Forecasting the monthly average retail price of steak in Canada
21 Going above and beyond

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
456
Langue:
Anglais

Caractéristiques

EAN:
9781638351474
Date de parution :
14-11-22
Format:
Ebook
Protection digitale:
Adobe DRM
Format numérique:
ePub
Librairie Club

Seulement chez Librairie Club

+ 49 points sur votre carte client de Librairie Club
Standaard Boekhandel

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.