•  Retrait en 2 heures
  •  Assortiment impressionnant
  •  Paiement sécurisé
  •  Toujours un magasin près de chez vous
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

When Nlp Meets LLM

Neural Approaches to Context-Based Conversational Question Answering

Munazza Zaib, Quan Z Sheng, Wei Emma Zhang, Adnan Mahmood
Livre relié | Anglais
105,45 €
+ 210 points
Livraison 2 à 3 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

This book looks at conversational search in intelligent dialogue systems, as it investigates and addresses the challenges pertinent to effective context incorporation in conversational question answering (ConvQA). The authors explore the possibility of designing a scalable Conversational Question Answering Agent that can handle the challenges of incomplete/ambiguous questions, better able to relate to co-references to cope with the problems of effective weights and optimal threshold selection in vehicular networks. A fundamental emphasis is the understanding of ambiguous follow-up questions and the generation of contextual and question entities to fill in the missing information gaps. Key topics are studied, such as 'hard history selection' to filter out the context that is not relevant and performing a re-ranking of the selected turns based on their significance to answer the question as a part of the soft history selection process.

This book aims to demonstrate that the history selection and modelling approaches proposed can effectively improve the performance of ConvQA models in different settings. The proposed models are compared with the state-of-the-art vis-à-vis different conversational datasets and provide new insights into conversational information retrieval. Through a systematic study of structured representations, entity-aware history selection, and open-domain passage retrieval using contrastive learning, this book presents a robust framework for advancing multi-turn QA systems.

It is an essential resource for researchers, practitioners, and graduate students working at the intersection of NLP, dialogue systems, and intelligent information access.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
102
Langue:
Anglais

Caractéristiques

EAN:
9781032970844
Date de parution :
15-10-25
Format:
Livre relié
Format numérique:
Genaaid
Dimensions :
140 mm x 216 mm
Poids :
371 g
Librairie Club

Seulement chez Librairie Club

+ 210 points sur votre carte client de Librairie Club
Standaard Boekhandel

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.